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ABSTRACT

This Semiannual Technical Suwaary covers the

period 1 October 1981 through 31 March 1982. It

describes the significant results of the Lincoln

Laboratory Multi-Dimensional Signal Processing

Research Program sponsored by the Rome Air Devel-

opment Center. in the areas of image segmenta-

tion, classification, target detection, and adap-

tive contrast enhancement.
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MULTI-DIMENSIONAL SIGNAL PROCESSING RESEARCH PROGRAM

1. INTRODUCTION AND SUMMARY

The Lincoln Laboratory Multi-Dimensional Signal Processing Research

Program was initiated in FY 80 as a research effort directed toward the

development and understanding of the theory of digital processing of multi-

dimensional signals and its applications to real-time image processing and
analysis. A specific long-range application is the automated processing of

aerial reconnaissance imagery. Current research projects which support this

long-range goal are image modeling for segmentation, classification, and

target detection, techniques for adaptive contrast enhancement, and multi-
processor architectures for implementing image-processing algorithms . In

this Semiannual Technical Summary we shall describe in detail our work to

date on the detection of anomalous areas using an image-modeling approach.

In the area of adaptive contrast enhancement we have recently completed
the initial development of a software module for implementing the algorittns

previously developed under this program. This software module was written in

the programming language "C" to facilitate its transfer to the RADC

Automatic Feature Extraction System (AFES), which utilizes a UNIX-based

operating system. We are currently in the process of transferring this

software module and its docwaentation to RADC/IRRE for testing,

We have begun the paper development of a strawman multi-processor

architecture for image-processing applications. We have been looking at

generic image-processing operations such as linear filtering, median

filtering, nonlinearities, segmentation, edge detection, and Fourier

transforcAtion. Based on operations such as these, it seem that

straightforward data partitioning techniques can be used in most cases to

fit the operation into a multi-proceasor implementation. We plan to

continue refining our architectural approach during the remainder of FY 82 to

incorporate other image operations and to address the problems of

programmability, I/0, inter-processor -nic*tions, and required

performance levels.



The remainder of this report is devoted to a comprehensive treatment of

both our theoretical and empirical results in the area of target detection

within aerial reconnaissance imagery.

2. TARGET DETECTION BY PARAMETER TRACKING

This component of our research relates to the problem of detecting

targets (i.e., anomalous areas) in aerial photographs and is an outgrowth of

our work in image modeling, segmentation, and classification. We can loosely

define the target-detection problem as the detection of man-made objects in a

textured background (e.g., trees, grass, fields, etc.).

Usually, in detection theory the target (or signal) is added to the

background (or noise), and filtering procedures are well established for

increasing the signal-to-noise ratio. In image processing, however, the

target pixels replace the background pixels. Motivated by this observation,

we model an aerial photograph as a 2-D random process which is the output of

a continuously space-varying linear filter. We assume that a textured

background (i.e., the 2-D filter representing the background) is slowly

varying, while an anomalous area of the image reflects a quick change in the

filter characteristics.

One possible interpretation of the target-detection problem then

consists of detecting large changes in 2-D filter parameters. That is, we

"track" the parameters of the model; when a target area is reached, the

parameters tend to change quickly, indicatin& the presence of a target.

Furthermore, we shall assume no knowledge of the target or background except

that the target's spectral characteristics differ from that of its

background. In particular, the target may have high or low frequencies

coopared with the background and/or a different mean or variance then the

background. This assumption differs from that of many available target-

detection algorith= which rely on only a change of intensity and/or

variance of the target from the background.
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Our preliminary results in this approach to target detection are

discussed in the previous Semiannual Technical Summary,' where we addressed

this problem in one dimension to develop the theory and our intuition before

extending the results to the two-dimensional problem.

In Sec. 2.1, we shall review and elaborate on this one-dimensional

theory. In particular, we derive nonrecursive and recursive least-squares

procedures for parameter tracking and detection when the data are seen

through a finite-extent sliding window. From these derivations, we see that

the recursive approach is preferable (computationally) and also gain further

insight into the results of Ref. 1. Furthermore, theme results lead us to

some extensions of Ref. 1 for the one-dimensional problem which appear to

hold promise for the two-dimensional case. Specifically, we introduce the

use of prediction error in detecting anomalous areas of a signal. A target

is detected when a large error occurs in predicting a sample of the signal

from its past (i.e., causal prediction). Almost always, the prediction error

compares favorably with the change in filter parameters when used in

detecting small anomalous areas of a signal. We also investigate the

prediction of a signal sample from its surrounding values (i.e., noncausal

prediction). Such an approach (noncausal) to detection may be particularly

useful in a 2-D context where no directionality is assumed.
In Sec. 2.2, we extend a subset of our I-D results to develop a 2-0

target-detection algorittn which relies on tracking the parameters of a

continuously space-varying 2-D filter. As in the 1-D case, we explore both

recursive and nonreeursive structures for least-squares parameter estimation.

Unlike the I-D case, however, we shall see that it may be desirable

(cLmputationally) to perform 2-D least-squarea directly (i.e.,

nonrecursively) at each pixel rather than recursively. Nevertheless, our

derivation of a 2-D recursion lends insight into the nature of filter

parameter changes acroas an image.

As before, detection of an anomalous area of &A image is based en

changee in the estimated filter parameters. We shall show that. because of a

lack of image directionality, the choice of the mask of the 2-D filter sodel

3



can play an important role in accurate estimation of the parameters (and thus

their change used in detection). We shall illustrate such variations on a

baseline algorithm by detecting small targets (e.g., 4 x 4, 3 x 3, and 2 x 2

pixels) within RADC image data. Finally, we comment on the extension to 2-D

of the use of causal and noncausal prediction error in detection. In

particular, we conjecture that the 2-D noncausal prediction error may

provide a significant improvement over the present algorithm (based on

parameter changes) in detecting small objects in a cluttered background such

as a forested area. Consequently, investigation of various 2-D prediction-

error functions will be a large component of our future research in target

detection,

2.1 Target Detection in One Dimension

Here, we present an algorithm for target detection in I-D. Our

analysis is used as a stepping stone to the development of an analogous 2-D

algorithm in the following section.

2.1.1 Nonrecursive Parameter Estimation

Suppose that a I-D sequence s(n) follows an autoregressive model, and

thut is generated by a difference equation of the form

s(n) - ) a(k) 9(n- k) w v(n) (1)
k-I

where v(n) is zero-mean white noise. Our objective is to estimate from s(a)

the model parameters a(k) for k e 11,P). Further, suppose that we have

available a sagment of s(n) for n in the interval [-P e no,n 1 l, that is,

al - no * P + I data points. We then define the error e(n) over the

interval [n0,nI1 (which we assume is N points in duration, i.e., N

n- no * 1) by

e(a) s •(n) = a(k) s(n - k) n c [no,nil . (2)
kaI

4



e(n) can be interpreted as the error in predicting s(n) from its past

P samples. Our goal then becomes to minimize the sum of the squared

prediction errors given by

n1

En] e2(n)
nn 0

To accomplish this minimization, we first place the problem in a matrix

algebra framework. In particular, we define the vectors ( and ( by

"(n) a(2)

s(nO + I) a(2)
a N C p

L(ni) I(P)
and the matrix S by

-p P

s(n0 1) s(n 0 - 2) *(n - Pt

S(no) S(no - 1) 8(1o -1 -

S. • N

sf(hi 1) s(nj " ) (nj P)

Thus, the error E~n1 J in Eq. (3) becomes

• T
Em1) - as)- 1 [Sn- o) (4)



where T denotes matrix transpose. Differentiating Eq. (4) with respect to

a to find the least-squares error, we obtain2

[Ts]-I T
[S SI S a (5)

T
where S S is a P x P matrix (P being the order of our model). The solution

Eq. (5) is often referred to as the covariance method of linear prediction.

Thus, the inverse of a P x P matrix is required to compute a. ibis will

require on the order of p 3 operations. 2

Suppose now that we wish to obtain an estimate of a for many N-point

segments and, in particular, over the intervals (no + m, n, + ml •ihere m 0,

1,2........In the next section, we derive a method of updating the
T -I

coefficients a without recooputing the matrix (S S)

2.1.2 Recursive Parameter Estimation*

Let us suppose that a new data point is given (i.e., o(n, * 1)1 and that

one is eliminated [i.e., s(no)] so that our new data set runs from no - P + 1

to nj + 1. The sum of the squared errors over the interval (n0 * 1, n, * 1)

then becomas

gin, 11 ,n +Fin e2Cn, e2(nO) (6)

where e(n 1 + I) is the error in predicting the oew sample s(n1  0:

P

e(*i 1) s(n 1 • 1) - 1 a(k) s(nI * I - k) (7s)
k-l

* -d-e--- on in this section parallel* that of Ref. 3, where the data set

increases with tize.
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and e(nO) is the error in predicting the old sample s(an):

P
e(nO =S(no- a(k) s(no k) (7b)

k-1

In matrix form, we can write Eq. (6) as

E(n1 + 11 = E(unl + [dc- s(n1 + 1)12 - tcu - 8(n0)1 2  (8)

where

[s(nl o) (no -2)

dT T K p T (no

s(nj P) S(no P)

Differentiating Eq. (8) with respect to a, we obtainz

T T T1 -1 T TT

Now, we can simplify Eq. (9) as

T c * 4I-l [S GT)

where

ci. tRG I(0

SG 2 2c -



i. .
and

-s (no)

and where R = sTs. We wish to avoid direct computation of the matrix inverse

in Eq. (10). To accomplish this, we rely on the matrix identity given by

(A + BCI-1 = A-1 - A- 1 B [CA-1B + I1-I CA-1 (11)

T
where I is the identity matrix. Letting A - R, B - G and C = F in

Eq. (10), we obtain

a = [R-I - R- G T(FR- G I)-I FR-I] (ST0 + GT Q] (12)

Note that R- 1 is assumed known from the previous computation of L. At this

point, for clarity, let us change notation so that a becomes a[ni + 1],

i.e., the filter parameters estimated within the interval [no + 1, nj + 11.

Then, Eq. (12) can be written as

a[nI + 1] S R-ISTa - R-IG (FR-GT + I)-I FR-I S T

+ R-1GTQ - R- GT(FR-1GT G 0)- FR-I GTQ (13)

-1 T
Noting that a(njI - R S a and defining a "gain matrix" K as

K a R- GT(FR- +I )- (14)

we hive

8



1IT 'iT

a[n1 + i] = a[nI - KFa[n1 .( R-I Q - KFR GT Q

- a[n1 ] - KFa[n11

+ R -iG T(FR-*GT + I)-' (FR CIr + I)Q - KFR G TQ

- afn ] - KFa[nI] + K(FR-I T + I)Q - K-1 G TQ

- afn I - KFa[n I + KQ . (15)

Finally, we have

[nI + 11 a[n 1 ] + K(Q - Fa[n 1 ]) (16)

which provides a recursive means of updating atn].

Now Ict uta consider the Sain matrix K. The matrix computation involved

in finding K can be represeieLed as

2- . •--2---
I "T + (17)

Thus, we need to compute the inverse of a matrix (i.e., FR G + 1) which is

of size 2 x 2, in contrast to the direct approach which requires the inverse

of a P x P matrix (entailing 0(P 3 ) operationas. Note from Eq. (12) that IC

can also be recursively updated as
S-I -1 -l

R *R -KFR (1$)

which requires some additional matrix multiplication* of order P2 .

Consequently, the bulk of the computation lies not in the matrix inversion,

but in matrig multiplications of order p2.

9
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2.1.3 Detection Functionals

It was pointed out in the introduction to Sec. 2 that one procedure for

detecting anomalous areas of a signal is to detect abrupt changes in the

parameter estimates of the time-varying filter.' If the model parameters of a

stationary background are known, then one obvious choice of a detection

functional is the mean squared difference between the known background

parameters and the parameter estimates. If the data deviate from the

background (i.e., a target is present), this mean squared error should

suddenly change to account for the large error that would be encountered in

predicting the first few points of the new data set if atnl + I] didn't

change much from a[n1 ]. Examples of such abrupt changes in this functional

were illustrated in Ref. I.

This section describes and demonstrates with examples alternative

detection functionals which do not require background information or

ousumptions of siai.ouarity.

Th,• Coefficient Change Functional:- To free ourselves from a priori

information about the background and the atationarity assuxption, we first

considered a detection functional of the form:

C~n I] - (anI + 1 - 4[nl) (a[in + 1] - 4~nl (19)

which iii the mean squared difference between two consecutive parmeter
estimates. We might expect C~n1 ] to juzp only when our sliding window first

hits the target and when the window just leaves the target. Sowething

similar to Cnil vwas considered by Dove and Oppenheim' who referred to

Eq. (19) as the coefficient change functional.

Although this functional has been used vith good success in both I-D and

in extensions to 2-D, a potential problem exists. This change function&l is

socwtimes not responsive to small extent targets in a highly cluttered

background (e.g., trees). Note that the parmeter estimates rely on the

correlation function R a ST S. A small extent target may not change R

i0



sufficiently to generate a corresponding change in filter parameters.

However, such absence of change in the parameters may actually aid a

detuccion functional based on prediction error - as we show in the following

section.

The Prediction Error Functional:- Let us return to Eq. (16) which we

ncw write as

a(nI + 1] - a[nl] + ke[nI] (20)

* where

e[nj] - Q - Fa[nl]

- - a[njj

f e(n1 + 1) - da(n 1 ]1

L s(no) + cain1 ] j

e [nlI 1
:i (21)

Frcm Eqs. (7) and (6), we see that e,(n) in Eq. (21) is the error in

predicting the new signal setle with the old parmeters. When this new

signal sample s(n1 + 1) is a member of an anomalous area, we expece the error

in predicting a(-1 + I) to change abruptly when the old set of coetiicienta

41n 1 ] is based on data not encompacsing the tirget. Note that, although

the coefficient change a[%j + 11 - a4nil is a fulction of el(n) (i.e.,

&In, + 1) - aln1] - Ketnj), the time-var)ing gain term K and e 2 (n, may droum

out the change in el(n).
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Fig. 1. A target aad signal based ou a firec-order model.

TARGET

o064 128
n

gig. 2(a). Coefficient estiLmae for Fig. I.
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It is possible to generalize this notion of prediction error for target

detection. In particular, el(n) in Eq. (21) represents a causal prediction

error, i.e., s(ni + 1) is predicted from the past P values of s(n). Clearly,

it is possible to formulate the least-squares estimation problems of

Secs. 2.1.1 and 2.1.2 in terms of noncausal prediction of a smple of s(n)

from its surrounding neighbors, i.e., a smoothing of s(n) from points to its

left and right:

P
s(n) "I a(k) s(n - Q) + w(n) (22)

We have applied such noncausal detection to l-D with success. Noncausal

prediction may be particularly useful in 2-D detection where there exists no

apparent directionality. In the next section, we compare by example the

various detection functionals discussed in this section.

2.1.4 Examples
Consider a sequence s(n) of the form:

s(n) - 0.95#(n - 1) + w(n) (23)

where w(n) is zero-meau white noise. A sample function of s(n) is shown in
Fig. 1. A 4-point high-frequency target at n - 90, 91, 92, and 93 is also

shown there. Figure 2(a) depicts the coefficient estiuate baoed on a

16-point window, and Fig. 2(b) shows the corresponding coefficient change

C[n). Note that a global change in e-an and other local phenomena in the
background has been emphasized over the target. Figure 2(c) depicts the

equared prediction error, e2In); the target is clearly detected.

In a second example, we analyzed a cross section of pure tree data from

the field-tree RADC image. Figure 3 depicts this cross hection with its aean

removed (see Sec.2.1.5), with a 3-point constant-level target imposed at n *

64, 65, and 66. A 5-pole model was asstmed and a 16-point sliding window
2wao used. Cmn] and eI(n) are shown in Figs. 4(a) and (b), respectively.

Note that e2(na is withoot the false alarm of C[n).

13
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111707o1

0.25

TARGET

I
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n

Fig. 2(b). C[] for Fig. 1.

TARGET

Li
0 64 128

n

Fig. 2(c). e I (a for Fig. 1.
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111!7o72-N1
TARGET

250

0

0 64 128

Fig. 3. Cross section of RADC data.

-1117073:N

TARGET

0 64 128

n

Fig. 4(a). C(n[ for Fig. 3.
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TARGET

60000

0 64

n
2

Fig. 4(b,). e Jul for Fig. 3.

Consider again the sequence generated bVy q. (23) in Fig. 1, but now

vhere we *sutme a model of the form

s(u) a a(l) .(n - 1) + a(2) s(n * 1) * w(n) (24)

i.e., e(n) is a function of its two nearest adjacent neighbors. Figure 5

depicts the noncausal prediction error corresponding to the signal in Fig. I

and Wiich uses a 16-point sliding vindow. Finally, the noncausal model

Eq. (24) was used to generate a prediction error from the image cross section

given in Fig. 3. The prediction error is depicted in Fig. 6. The target is

clearly detected in both cases.

2.1.5 Removal of the Mean Level

It should be noted that the image cross section of Fig. 3 contains a

nontero mean which violates our model Eqs. (1) and (22) where zero-mean white

16
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TARGET

0 64 128
1?.1

Fig. 5. e (a] (noncausal) for Fig. 1.

20000 - TARGET

10000-

0 64 128

Fig. 6. e In] (noncausal) for Fig. 3.

17



noise is assumed to drive a linear system. One approach to addressing a

time-varying nonzero-mean level is to incorporate it within our model so

that we estimate the mean as well as the parameters a(k):

P
s(n) = a(k) s(n- k) + w(n) + C (25)

k-i

where C is a mean level added to the input w(n). The output will then

contain a nonzero mean.

Now, if we perform least-squares estimation, we find that the best

estimate of the a(k)s is given approximately by (this derivation parallels

that in Sec. 2.1.1):

a (STSo - m2)-1 (ST - m2) (26)

where N is the Aata length and

nl

Mi - s(n)/N (27)
nwn 0

which is an estimate of the mean of the output. The best estivate of C is

given approximately by

c m [I- a(k) (28)
k-l

Equation (26) simply implies that we first estimate the mean of s(n) through

Eq. (27), subtract it fro-m s(n), and then solve Eq. (5) of Sec. 2.1.1. To

find C, we "inverse filter" the mean at the output to obtain the mean at the

input.

Removal of the mean may not only lead to more accurate determination of

the a(k)Ws, but also provide an ddditional parameter in our functional for

target detection. We shall discuss this possibility in the next section.

18



2.2 Target Detection in Two Dimensions

One obvious approach to extending our 1-D -esults to 2-D target

detection is to apply I-D recursive least-squarp.s estimation along rows or

columns of an image. Of course, such a procedure is not "optimal" since the

correlation of a sequence s(n,m) is considered in only one direction. We

have found empirically two problems with this approach: (1) various

detection functionals used have a large dynamic range (i.e., the functional

exhibits little consistency from line to line), and (2) an undesirably long

window length (along each row or column) may be required, resulting in

excessive "memory" of the functional.5,6

In this section, we describe a least-squares procedure which invokes

rows and columns simultaneously, i.e., we address the 2-D problem directly.

After considering both nonrecursive and recursive estimation, we devise a 2-D

target detection algorithm which is a significant improvement over its line-

by-line counterpart. We demonstrate the algorithm by applying it to the

detection of anomalous areas within aerial photographs obtained from RADC.

2.2.1 Nonrecursive Parameter Estimation

Conceptually, 2-D least-squares estimation is similar to the 1-0 case.

We begin with a 2-P sequence which follows an autoregreosive model, so it is

given by a difference equation of the form

0(n,m) - . a(j,k) o(n- j, n-' k) + w(n,m) (29)
j k

(j, ) (0,0)

Swhere w(n,ta) ie zero-mean white noise. For the moment, we shall assume that

the prediction coefficients a(j,k) fall within a (P x Q) first-quadrant

mask, as illustrated in Fig. 7. For simplicity, we limit our derivations to

this class of prediction =asks, although it is clearly applicable to more

general mask shapes. In particular, we shall investigate second-quadrant atd

nonaymmetric half-plane masks in Sec. 2.2.5.

Our objective 's to estimnate from s(nm) the model paraters a(jk) for

j O,,...,P and k O,1,...,Q, with j *k 0 0. Further, let us suppose

19
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m

Fig. 7. A first-quafraut, quarter-plane mask for predictor
coeffici~ents &(xi,mj.

[ (-P + no. - + Mn0 )

ris.e-u d. etin blacks used in 2-0 least squares.
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that we have available a square block of data, i.e., s(n,m) for (n,m) e [-p +

no,nl] x [-Q + m0,ml] (see Fig. 8). We then define the error e(n,m) over the

region I, given by I [no,nj] x [mo,ml], ;s

P Q
e(n,m) - s(n,m) - I a(j,k) s(n - j, m - k) (n,m) e I (30)

j-0 k-0

Our goal becomes to minimize the sum of the squared errors given by

n m

EtnM -1 e2 (n,m) (31)
nwn 0 `0

The approach we take is to transform the 2-D problem to a 1-D problem so

that a I-D least-squares solution 14 applicable. Note, however, that we will

still have solved the 2-0 leaat-squares problem. In particular, we wish ta

transform Eq. (31) into a form similar to the I-D error expression in

Eq. (1). To accomplish this transforzation, we define the following vectors

stni,ml] and a by

21



a(O:1)] s(no,mo)
a(O,2) 1s(nO, m0 + 1)

•+ 1

a(O,03 s(nomI)

a(1,O) es(n + I, 'so)

a(,)s(0 + 1, m0 + 1)

a(nl,m] c, (PQ - 1) 0 (PQ -a) (32)

a(l,Q) s(n 0 + i, i)

*t U

* U

a(P,O) e(n1 ,io)
a(P,I) s(np , m0+

[a(P,Q)j s(nll,mi)

and the matrix S by

A -1-.

A 0 ----

Sm = (33.)

22



where

-s(° - 0 o . -o O. ...S(o n,. . o. 0)] ... r(nl *. - ,. oM 0 .. ... - .oo 0
1
(*(no + - 0, no * -I-0, no + 1 0)1 (& 1(no j - P, no L - 0) .. 's'no P, n. o I 1 )1I(s -nI )...s(-O* , -a, mt - 0)1 ... ,(,no * j - P. ma O) ... (,o * P P. m - 0)1

(33b)

and where we have assumed the known data segment to be of extent N x N. Note

that a is a vector consisting of the concatenation of the rows of s(um) over

I, a[nj,m1 ] is a vector consisting of the concatenation of the rows of

a(j,k) for (j,k) C [0,P] % [O,Q] with j -k * 0, and S is a matrix which

consists of the concatenation of rowe of various sub-sequences of the known

s(n,Q) required in predicting aach value of s(n,m) over I.

Therefore, we can write Eq. (31) as

n mISEtnVWI,•, e [ (n,m)

0 '0IT S(Sailm II- o)T (Sa 1 ,m11 -to (34)

From the similarity of Cq. (34) Wlith Eq. (4), we can write the solution to

minimizing Eq. (34) with respect to a(nI,mwj as

SnoI R-1 S (35a)

where

R -STS . (35b)

23



Note that the matrix R is of extent (PQ - 1) x (PQ - i) and difficulty in its

inversion is dependent on the model order, not on the size of the known block

of data.

In particular, since R is generally not Toepltz, its inversion will

require on the order of (PQ) 3 operations (i.e., multiplications within, for

example, Cholesky's decomposition algorithm2 ). It should be pointed out that

the computation of R-1 can probably be reduced by considering its block-like

structure resulting from the conversion of a 2-D problem to a 1-D problem.

Thus, assuming P,Q << N, the bulk of the computation is embedded within

forming R - S TS which requires on the order of N4 operations.

2.2.2 Recursive Parameter Estimation

Let us suppose now that we wish to estimate the parameters a(nl,mll over

a large data set. Our goal in this section is to devise a recursive

procedure for updating the parameter estimates over the 2-D plane without

recomputing the inverse of R. Unlike the I-D problem, many ways exist to

recurse in the 2-D plane, i.e., vertically, horizontally, diagonally, etc.

In all these procedures, entire rows and/or columns of data enter and exit

the view of a 2-D sliding window. An alternative to this class of recursions

is the class of "snake recursions" which allow only one or a few signal

samples to enter and exit the window's field of view. Such recursions may

not only reduce computation, but provide greater resolution in detecting

small-extent 2-D targets. For the present, however, we have investigated the

row (column) recursion, and its derivation is the primary emphasis of this

section. In the conclusion of this section, however, we briefly describe one

point-by-point recursion, its computational advantages, and its potential for

high-resolution detection.

Now let us suppose that we add a new row of data, i.e., s(nl + 1, m) for

m c (-q + mO, mlI and eliminate the known row at n a -P + no (see Fig. 9).

Our goal is to generate the coefficient estimates a(nl + 1, ml] based on the

new row of data and the old coefficient estimates ainj,ml). The new error

of interest is given by:
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Fig. 9. Data update used in 2-D recursive least squares.

E(n1 + 1, l1] - E[n 1 ,lw] - 1 e2(n,m) + I e2(n1 + 1, M) (36)

where e(n, + 1, m) is the error in predicting the new row s(n ÷ 1, + m):

P Q
e(n + 1, M) - S(nu + 1, M) - I a(j,k) *(n * 1 - j, - k) (37)J-o k-O

(j k)*(O,O)

and where e(nom) is the error in predicting the old row:

P9
e(noo) " a(no,=) - & Q(j,k) s(n - j, -k) (38)

j-o k-O 0
(j,k)*(O,o)
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In matrix form, we can write Eq. (36) as

E[n]- E1n1,m1 ] + (Da[n + 1, mi] g)T (Da[n 1  I, 1 ] - g)

- (Ca[nI + 1, mI] - f)T (Ca[n 1 + 1, m1] f) (39)

where a[n1 + 1, mI] is given in Eq. (32), and where g and f are the vector

representations of the old and new rows, respectively:

S(nomo) -s(ni + I, Ao)

s(n 0 , m0 + 1) s(ni + 1, m0 + I)

g N f • N (40)

s(n 0 ,mi) s(n 1 + 1, mi)

"and where C - A0 and D w AN with A. the N x (PQ - 1) matrix given in

Eq. (33b). Noting the similarity of Eq. (40) with Eq. (8), we can write the

solution a[nl + 1, mi) which minimizes E[n1 + i, m1] as

a[tn + 1, mi [ - cTc + DTD]0 1- [S T - CTf] (41)

Now, we can simplify Eq. (41) as

"a(n + 1, m1] T- T T (42)

where

G 2N F a - ]2N
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and where

.- 2N

Following our derivation in Sec. 2.1.2, we then have the recursive

computation of a[n + I, mi1 ]:

a[n 1 + 1, m] afn1 ,mI] + K(Q - Fa[n1 ml]) (43)

where K is given by Eq. (14) and R-1 can be recursively updated as in

Eq. (18).

The matrix computation involved in finding K can be represented as (with

L - PQ - 0):

-*,N- I 2 10 2N•

RK] GT] FR] [ IGT + N (44)

t f

so that K is an L x 2N matrix. The important point here is that the inverse

of a 2N x 2N matrix is required to compute K, implying a number of operations

on the order of (N) 3 operations per image pixel - clearly Intolerable for

vindows of large extent. Thus, unlike in the I-D case, a recursion based ou

Eq. (43) may entail more computation than performing 2-D least-squared
directly through Eq. (35). Of course, we have not considered any special

structure in FR G + I which may help to reduce computation.

An alternative to this roy-by-row recursion (which we promised to

briefly describe before leaving this section) is a "snake-like" point-by-

point recursion illustrated in Fig. 10. To compute the parameter estimates

under the wlndov in Fig. 9, we must perform N "little" recursiono each of

which is I-D in nature, thus requiring the inverse of N 2 x 2 matrices [see

Eq. (14)]. Therefore, we are confronted vith the trade-off between one
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Fig. 10. A point-by-point 2-D recursion.

inverse of a large 2N x 2N matrix and N inverses of little 2 x 2 matrices -

clearly a significant reduction in computation. One other potenuial

advantage of this point-by-point recursion is that it does not attempt to

predict an entire row on each step. An implication of this property is that

if target detection relies on a prediction error, a point-by-point recursion
may be more likely to detect very small-extent and/or closely spaced targets.

Howver, since N recursions are required for each pixel, our detection
function become three-dimensional. Such speculation serves as a starting

point for future research.

For the present, however, ye have put aside all recursive solutions and

devised a detection algorithm based on direct computation of Eq. (35).

Nevertheless, all this discussion about recursions is useful since (as ve

shall see in the following section) it has provided insight into the nature

of changes in the parmeter estimates across an image.
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2.2.3 Detection Functionals

Clearly, we can extend our 1-D detection functionals to 2-D. The

functional we have chosen to use (for the present) in the implementation of
2-D detection algorithms is the coefficient change functional given by

C[nl,mI] = (a[nI + 1, MI] - a[nli 1])T (atnI + 1, mI] - a[nl,ml1) . (45)

From Eq. (43), C[nl,ml] can be written as

C(nlmI] - {K(Q- Fa[nlm 1 ])} T TK(Q- Fa~nlil]))

e~tnl,m1] ]T Fe [ni~n
=K- x K (46)

Le2[nl,m Je 2 n1 ,ml]J

where elfnl,ml] is the error in predicting the new row with the old

coefficient estimates:

e Inl-,m Da[nV,mI] g (47a)

and e 2 [n1 ,m,] is the c#ror in predicting the old row with the old

coefficient estimates:

e2 [n18i1] I Ca[nl#,M1  - f • (47b)

Thus, C[nI1 mj] resembles a weighted sum of these prediction errors. It is
* important to note that since Eqs. (35) and (43) wust yield the same result

(based, of course, on the sam particular known segment of s(n,m)], in either

case (i.e., for either the recursive or nottrecursive solution), C(nam,1  can

be written as Eq. (46).

29



RECURShIVEl i 78 N{ "- ESTIMATION

I

I w(n.m)

On m) i DIRECT COMPUTE
X + ESTIMATION J(n.m" C(n.m]

ms t CREATE
L- -... DETECTION

FUNCTIONAL

MED1IAN THRESHO1,]D- d WITH

TARGETMA

Fig. 11. 2-D detection algorithm.
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An alternative detection functional (analogous to the 1-D function

ej[n 1] in Eq. (21)] is the prediction error e 1 [nl,m 1 ]. At each pixel of an

image, we might consider abrupt changes in el[jn,ml]. If a target happens to

fall along the new row which just enters the 2-D (sliding) window's view, we

expect a large error in prediction at the target location along that row.

For similar arguments given in Sec. 2.1.3 for the 1-D case, this prediction

error may be more sensitive to targets of small extent than the coefficient

change function. Furthermore, in the case of images, noncausal prediction

may be more reasonable to attempt than the causal prediction given above.

Judging from our I-D experiments of Sec. 2.1.4, detection based on ej[1n,m 1 ]

(or its noncausal counterpart) holds promise, and thus serves as a possible

avenue of future research. However, in the remainder of this report, we

shall investigate the use of the coefficient change function for detection.

2.2.4 The 2-D Target-Detection Algorithm

Our overall 2-D target-detection algorithm based on the coefficient

change functional is illustrated in Fig. 11. Hidden within this block

diagram are a number of important decisions. First, m5 represents the local

mean of s(n,m) under the sliding window w(n,m). As in the I-D case (see

Sec. 2.1.5), in theory this mean level should be removed, although in

practice it was found to make little difference in the coefficient change

functional. (However, the coefficient estimates themselves may differ.)

Thus, ma was not subtracted from the data, although it was found useful at

times as an additional parameter within the detection functional.

Another decision (hidden within the "direct estimation" box) involves

the choice of the shape and size of the prediction mask. Recall that our

derivations in the previous sections were restricted to a first-quadrant

quarter-plane mask. Since an image has no apparent directionality, a

quarter-plane mask may bia the coefficient estimates. Furthermore, from the

work of Ekstrom and Woods, 7 ve know that a quarter-plane mask (even infinite

in extent) is not sufficient to match an arbitrary power spectrum, whereas a

nonsymmetric half-plane mask is sufficient.
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Fig. 12. RADC image.A1

Fig. 13. RADC image with targets.
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As illustrated in Fig. 11, before applying a threshold, we smoothed the

detection functional with an FIR filter. This operation helped reduce the

number of false alarms. The threshold choice was based on heuristics,

although we are currently considering an adaptive threshold (e.g., CFAR used

in radar). Finally, to create the target map, a 3 x 3 median filter was

applied to further reduce the false-alarm rate.

The following examples illustrate these considerations and also

demonstrate the success of detecting targets of small extent.

2.2.5 Examples

In the following set of examples, we have applied the 2-D nonrecursive

least-squares algorithm to the RADC image data which are composed of forests

and fields illustrated in Fig. 12. Anomalous regions in the photograph were

created by taking small areas (2 x 2, 3 x 3, and 4 x 4 pixels in extent) of

forested regions and transplanting them to the field regions as depicted in

Fig. 13. The coefficient-change technique can find these anomalous areas in

spite of the use of the very low-order model with P = Q I 1 (i.e., three

independent coefficients).

Figure 14 illustrates the coefficient change function Eq. (45) (before

smoothing) based on a 5 x 5 sliding window* and a 2 x 2 first-quadrant

prediction mask. Note that C[n,ml is largest at the three targets and at the

field-field and field-tree transitions. Figure 15 depicts ctn,m] based on a

2 x 2 second-quadrant prediction mask. The average of Figs. 14 and 15 is

shown in Fig. 16 which appears to be an improvement over either of these two

functionals, i.e., the tArget and transition regions are more clearly

accentuated. A cross section of the original image (through the

2 x 2 target) and the corresponding cross section of the averaged C(n,m] are

illustrated in Figs. 17(a) and (b), respectively.

We might consider the average in Fig. 16 to be a rough approximation to

a functional based on a nonsymmetric half-plane (NSHP) prediction mask.7 A

comparison of a first-quadrant, second-quadrant, and a 12-coefficient NSUP

prediction mask is illustrated in Fig. 18. C[n,m) associated with this NSHP

*All examples in this section are based on a 5 x 5 sliding window.
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Fig. 14. Detection futictional baaed on firvt-quadravc woek.
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Fig. 15. Detection functional based ou secov-quedrant mask.
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Fig. 16. Average of Fig$- 14 and 15.

36



11, 7087.N N
350

300-

250 FIELD-TREE
TRANSITION

FIELD-FIELD TARGET

ao- TRANSITION

ISO

100

0 .4

Fig. 17(a). Cross sectiou uf RAW image in Fig. 13,
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Fig. 18. Comparison of different prediction masks.

masit performed about as well as the average depicted in Fig. 16 in detecting
targets, although it seems to exhibit a poorer performance in detecting the

field-field transition.
Figures 19(a) and (b) depict the smoothed C(nm] of Fig. 16 after

application of a 3 x 3 FIR smoothing filter. The result of thresholding and
median filtering to create the target map is shown in Fig. 20 superimposed

on the original image. All three targets and the field-tree transition are
clearly detected.

These examples represent a subset of a large number of experiments

performed iv 2-D based on the coefficient-change function. For example, the

local mean level was not used in the experim~nts described above, but was

found in other examples to enhance C[n,m] which was reflected in reducing the
false-alarm rate of the target map. Other experiments involved smoothing the

parameters a[nl,ml1 with a Laplacian before computing C[nj,mj] (represents a
differencing operation in two directions), applying an exponential weight to

the windowed data before estimation (in order to emphasize certain regions),
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Fig. 19(a). Smoothed detection functional for RADC image.
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Fig. 19(b). Contour map of detection functional in Fig. 19(a).
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Fig. 20. Target r.,p cortesponding to detection functional
&nd image in Figs. 19 and 13.
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increasing and decreasing the window size, basing a detection functional on a

geometric mean squared change (rather than an arithmetic mean), incorporating

a variance measurement into the detection functional, etc. One problem in

all these studies involved the detection of anomalous areas in the tree data

of Fig. 12. Preliminary results indicate, however, that a 2-D extension of

-the use of the prediction error may have some advantages in such detection
problems over the coefficient-change function.
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